Skip to content

Looking for an academic job


UPDATE: I got a postdoc fellow position in Jonathan Pillow’s lab.

I plan to graduate this summer (July, 2010). Therefore, I am actively searching for a job. My long term goal is to understand the unsupervised learning process in the brain. So far, my training defines me as a computational neuroscientist; I have studied neuroscience, computation theory, signal processing, machine learning, dynamical systems, information theory and spike train analysis. Working with collaborators, I have done experiments on (rat cortical) neural cultures, analyzed lobster olfactory population coding, and studied discriminability of noise stimulation in rat auditory system. To continue my career, I am looking for opportunities to work with systems neuroscientists. With a strong theoretical background, I would like to develop robust methods for the analysis of data, design experiments for in vivo experiments, and formulate neural coding and learning principles.

The brain is intrinsically noisy, yet robust. How information is coded is strongly limited by what kind of noises is present in the system. From the neuron’s point of view, if two incoming signals cannot be discriminated well due to noise, they must be treated as being similar. If the brain is highly optimized to process signals, a good signal similarity measure and noise model would coincide. My short term goal is to extend and apply the statistical analysis methods for spike trains to multivariate in vivo data. This will be a stepping stone for understanding neural code, and deriving plausible unsupervised learning algorithms.

Context dependence is another aspect of neural coding in the brain that is not widely studied yet. It has been observed that individual neurons are not tuned for just one task, but participate in multiple tasks in a non-stationary manner. It seems that the neural ensemble is formed depending on the dynamic state. Compared to the widely used static neural tuning analysis, a dynamic neural code analysis is a much more challenging and data demanding task due to the higher degree of freedom in modeling. Using dynamic modeling techniques from machine learning, and signal processing, I propose to analyze context dependent population neural code, and decode using Bayesian filter like techniques. The similarity that can be induced from the variability of neural signals can be used to induce a Hilbert space such that kernel based algorithms can be efficiently implemented for modeling.

I’m open to both faculty and postdoc opportunities in US and Europe. Please contact via email |memming|at|cnel|.|ufl|.|edu| for more information. (CV)

2 Comments leave one →
  1. Katherine Feng permalink
    2010/02/18 1:16 am

    Memming will graduate soon~~ T.T

  2. 2010/03/04 3:43 pm

    Congratulations! Good luck.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: